

Boudjada, N. (1985). Thesis, Grenoble Univ., France.
Enraf-Nonius (1977). Structure Determination Package, version RSX11M. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stout, G. H. \& Jensen, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1990). C46, 968-970

Crystal Chemistry of cyclo-Hexaphosphates. X. Structure of Dicalcium Dilithium cyclo-Hexaphosphate Octahydrate

By M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie, associé à l'Universitè J. Fourier, CNRS, 166X, 38042 Grenoble CEDEX, France

(Received 5 August 1989; accepted 7 September 1989)

Abstract. $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}, M_{r}=711 \cdot 984$, triclinic, $P \overline{1}, a=7.767$ (2), $b=10.144$ (3), $c=7.225$ (2) \AA, α $=105.17(4), \quad \beta=102.76(4), \quad \gamma=84.95(4)^{\circ} ; \quad V=$ $535.6 \AA^{3}, \quad D_{x}=2.207 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\bar{\alpha})=$ $0.7107 \AA, \mu=1.082 \mathrm{~mm}^{-1}, F(000)=360$, room temperature, final $R=0.023$ for 2764 reflections. The atomic arrangement can be described as successive layers of planes made by LiO_{6} octahedra sharing corners with the $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions. These planes are interconnected in a three-dimensional manner by the CaO_{7} polyhedra and the hydrogen bonds. The calcium-sodium salt is isotypic.

Introduction. cyclo-Hexaphosphates of monovalentdivalent cations belong to various structural types and have very different degrees of hydration. During a systematic investigation of this type of compound, we previously reported the existence and described the crystal structures of $\mathrm{Mn}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1989) and $\mathrm{Cd}_{2} \mathrm{Na}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .14 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1990). In the present work we describe the chemical preparation and crystal structure of a new compound of this family, $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$. The calcium-sodium salt $\mathrm{Ca}_{2} \mathrm{Na}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$ is isotypic with the following unit-cell dimensions: $a=8.031$ (4), $b=10.296$ (5), $c=7 \cdot 279$ (3) $\AA, \alpha=105.69(5), \beta=103 \cdot 27(5), \gamma=$ $85 \cdot 30(5)^{\circ}$. Its preparation is similar to that described for the title compound.

Experimental. Crystals of the title compound were prepared by adding solid gypsum to an aqueous solution of lithium cyclo-hexaphosphate. After some days of evaporation at room temperature, crystals of $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ appeared as elongated triclinic prisms, sparingly soluble in water. The compound is stable for months at room temperature.

Crystal size: $0.18 \times 0.22 \times 0.12 \mathrm{~mm}$. Density not measured. Phillips PW1100 diffractometer, graphite monochromator. 15 reflections ($13.0<\theta<17.0^{\circ}$) for refining unit-cell dimensions. $\omega / 2 \theta$ scan, scan width: $1 \cdot 20^{\circ}$, scan speed: $0.02^{\circ} \mathrm{s}^{-1}$. Total background measuring time: 10 s. 3827 reflections collected ($3<\theta<$ $\left.35^{\circ}\right) ; \pm h, \pm k, l ; h_{\max }=12, k_{\max }=16, l_{\max }=10$. Two orientation and intensity control reflections ($\overline{1} 2 \overline{1}$ and $1 \overline{2} 1)$ measured every three hours without any significant variation. 3556 reflections obtained after averaging Friedel pairs ($R_{\text {int }}=0.01$). Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods (MULTAN77; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). H atoms located by difference Fourier syntheses. Anisotropic full-matrix least-squares refinement (on F), isotropic for H atoms. Unit weights. Final refinements with 2764 reflections corresponding to $F>3 \sigma_{F}$. Final $R=0.023 \quad(w R=$ 0.028), $S=0.609$, max. $\Delta / \sigma=0.03$, max. peak height in the final difference Fourier synthesis = $0.552 \mathrm{e} \AA^{-3}$. No secondary-extinction correction. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II.

Discussion. Table 1 reports the final atomic coordinates.* The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion has $\overline{1}$ internal symmetry and so is built by three independent P atoms. As is commonly observed for six-membered

[^0]Table 1. Final atomic coordinates and $B_{\text {eq }}$ with e.s.d.'s in parentheses

Fig. 1. Projection of the atomic arrangement of $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ along the c axis.
rings with such symmetry, the $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles are very different; here they spread from 97.15 to 133.35°. The two Li atoms are located on inversion

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in the atomic arrangement of $\mathrm{Ca}_{2}{ }^{-}$ $\mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$ with e.s.d.'s in parentheses

The $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron

$\mathrm{P}(1)$	$\mathrm{O}(E 11)$	$\mathrm{O}(E 12)$	O(L12)	$\mathrm{O}(L 13)$
$\mathrm{O}(E 11)$	1.489 (1)	119.94 (9)	$109 \cdot 17$ (7)	109.45 (8)
$\mathrm{O}(E 12)$	$2 \cdot 563$ (2)	1.471 (2)	109.00 (8)	108.74 (10)
$\mathrm{O}(L 12)$	$2 \cdot 526$ (2)	$2 \cdot 509$ (2)	1.605 (1)	98.37 (8)
$\mathrm{O}(L 13)$	$2 \cdot 525$ (2)	2.499 (2)	2.431 (2)	$1 \cdot 602$ (2)
$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron				
$\mathrm{P}(2)$	$\mathrm{O}(L 12)$	$\mathrm{O}(E 21)$	$\mathrm{O}(E 22)$	$\mathrm{O}(223)$
$\mathrm{O}(L 12)$	1.610 (2)	$108 \cdot 36$ (8)	110.55 (9)	95.36 (8)
$\mathrm{O}(E 21)$	$2 \cdot 513$ (2)	1.488(2)	119.54 (10)	111.46 (8)
$\mathrm{O}(E 22)$	2.539 (2)	$2 \cdot 562$ (2)	1.477 (2)	$107 \cdot 31$ (8)
$\mathrm{O}(L 23)$	$2 \cdot 410$ (2)	$2 \cdot 552$ (2)	$2 \cdot 479$ (2)	1.599 (1)
$\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron				
$\mathrm{P}(3)$	$\mathrm{O}(L 13)$	O(L23)	$\mathrm{O}(E 31)$	O(E32)
$\mathrm{O}(L 13)$	1.612 (1)	$102 \cdot 38$ (8)	109.76 (8)	106.99 (8)
$\mathrm{O}(223)$	$2 \cdot 506$ (2)	1.603 (1)	106.91 (8)	110.47 (8)
$\mathrm{O}(E 31)$	$2 \cdot 535$ (2)	$2 \cdot 482$ (2)	1.485 (1)	119.08 (8)
$\mathrm{O}(E 32)$	2.491 (2)	2.538 (2)	$2 \cdot 560$ (2)	1.485 (2)
$P(1)-P(2)$	$2 \cdot 867$	$P(1)$	2)-P(3)	133.35 (2)
$P(2)-P(3)$	2.906	$P(1)$) $-P(2)$	$97 \cdot 15$ (2)
$P(1)-P(3)$	$2 \cdot 877$	$\mathrm{P}(2)$	1)-P(3)	129.27 (2)
CaO_{7} polyhedron				
$\mathrm{Ca}-\mathrm{O}(E 11)$	2.441	Ca		$2 \cdot 406$ (1)
$\mathrm{Ca}-\mathrm{O}(E 12)$	2.298	Ca		2.401 (2)
$\mathrm{Ca}-\mathrm{O}(E 21)$	2.412	Ca		$2 \cdot 458$ (2)
$\mathrm{Ca}-\mathrm{O}(E 31)$	2.431			
LiO_{6} octahedra				
$\mathrm{Li}(1)-\mathrm{O}(E 11)$	2.032	2) $\mathrm{Li}(2)$	(E31)	$2 \cdot 181(1)(\times 2)$
$\mathrm{Li}(1)-\mathrm{O}(E 21)$	$2 \cdot 134$	2) $\quad \mathrm{Li}(2)$	(W2)	$2 \cdot 184(2)(\times 2)$
$\mathrm{Li}(1)-\mathrm{O}(W 3)$	$2 \cdot 329$	2) $\mathrm{Li}(2)$	(W4)	$2 \cdot 184(2)(\times 2)$
$\mathrm{Li}(1)-\mathrm{P}(1)$	3.159	2) $\mathrm{Li}(2)$		$3 \cdot 2768$ (4)
$\mathbf{L i}(1)-\mathrm{P}(2)$	3.286	$\times 2)$		

The hydrogen bonds

$\mathrm{O}(W)-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(W)-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}(W)-\mathrm{H} \cdots \mathrm{O}(W)-\mathrm{O}$	
$\mathrm{O}(W 1)-\mathrm{H}(1 W 1) \cdots \mathrm{O}(E 22)$	$0.85(4)$	$1.96(3)$	$169(5)$	$2.801(2)$
$\mathrm{O}(W 1)-\mathrm{H}(2 W 1) \cdots \mathrm{O}(W 4)$	$0.78(5)$	$1.95(5)$	$171(4)$	$2.721(3)$
$\mathrm{O}(W 2)-\mathrm{H}(1 W 2) \cdots \mathrm{O}(E 32)$	$0.88(4)$	$1.98(4)$	$160(4)$	$2.830(2)$
$\mathrm{O}(W 2)-\mathrm{H}(2 W 2) \cdots \mathrm{O}(E 22)$	$0.79(4)$	$1.93(4)$	$168(3)$	$2.717(2)$
$\mathrm{O}(W 3)-\mathrm{H}(1 W 3) \cdots \mathrm{O}(L 12)$	$0.78(4)$	$2.27(4)$	$164(4)$	$3.025(3)$
	$\cdots \mathrm{O}(E 12)$	$0.68(5)$	$2.86(5)$	$165(5)$
$\mathrm{O}(W 3)-\mathrm{H}(2 W 3)-\cdots \mathrm{O}(L 13)$	$0.68(5)$	$2.73(5)$	$142(5)$	$3.523(3)$
	$\cdots(297(2)$			
$\mathrm{O}(W 4)-\mathrm{H}(1 W 4) \cdots \mathrm{O}(W 3)$	$0.85(4)$	$1.92(4)$	$177(2)$	$2.772(2)$
$\mathrm{O}(W 4)-\mathrm{H}(2 W 4) \cdots \mathrm{O}(W 1)$	$0.80(4)$	$2.32(4)$	$142(5)$	$2.993(3)$
$\mathrm{H}(1 W 1)-\mathrm{O}(W 1)-\mathrm{H}(2 W 1)$	$106(4)$	$\mathrm{H}(1 W 3)-\mathrm{O}(W 3)-\mathrm{H}(2 W 3)$	$99(5)$	
$\mathrm{H}(1 W 2)-\mathrm{O}(W 2)-\mathrm{H}(2 W 2)$	$103(4)$	$\mathrm{H}(1 W 4)-\mathrm{O}(W 4)-\mathrm{H}(2 W 4)$	$114(4)$	

centres and have sixfold coordination comprising four O atoms and two water molecules for the first one $[\operatorname{Li}(1)]$ and four water molecules and two O atoms for the second $[\operatorname{Li}(2)]$. Within a range of $2 \cdot 50 \AA$ the Ca atom, located in a general position, has sevenfold coordination comprising five O atoms and two water molecules.
Main interatomic distances and bond angles in the phosphoric anion as well as metal-oxygen distances in the associated cation coordinations are given in Table 2.

Fig. 2. Projection of the atomic arrangement of $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$ along the a axis.

As shown by Fig. 1, a projection along the c axis, the centrosymmetric $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion located around the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the centrosymmetric $\mathrm{Li}(2) \mathrm{O}_{6}$ octahedron share two O atoms so as to
build an infinite chain parallel to [110]. These chains are themselves interconnected along the \mathbf{c} direction by the second lithium octahedron, $\mathrm{Li}(1) \mathrm{O}_{6}$, also centrosymmetric, so as to form planes parallel to [110] (Fig. 2). The connections between the phosphoric groups and the lithium octahedra are different. The $\mathrm{Li}(1) \mathrm{O}_{6}$ octahedron shares four O atoms with its two adjacent phosphoric groups while $\mathrm{Li}(2) \mathrm{O}_{6}$ shares two. These planes are themselves interconnected in a three-dimensional manner by the CaO_{7} polyhedra and the hydrogen bonds whose main geometrical features are given in Table 2. The drawings were made with STRUPLO (Fischer, 1985).

References

Averbuch-Роuchot, M. T. (1989). Acta Cryst. C45, 1856-1858. Averbuch-Роuchot, M. T. (1990). Acta Cryst. C46, 10-13.
Enraf-Nonius (1977). Structure Determination Package, version RSX11. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
International Tables for X-ray Crystallography (1974). Vol IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerca, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 970-972

Structure of $\mathbf{H o}_{2} \mathbf{B a}_{2} \mathbf{C u}_{1+x} \mathbf{P t}_{1-x} \mathbf{O}_{\mathbf{8}}(\boldsymbol{x}=\mathbf{0} \cdot \mathbf{1})$

By Yoko Saito, Kazutoshi Ukei, Toetsu Shishido and Tsuguo Fukuda
Institute for Materials Research, Tohokú University, Katahira, Aoba-ku, Sendai 980, Japan

(Received 5 April 1989; accepted 1 June 1989)

Abstract. $\mathrm{Ho}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1+x} \mathrm{Pt}_{1-x} \mathrm{O}_{8} \quad(x=0 \cdot 1), \quad M_{r}=$ 978.0, orthorhombic, Pcmn, $a=10.303$ (2), $b=$ $5 \cdot 668(1), c=13 \cdot 178$ (3) $\AA, V=769 \cdot 6$ (3) $\AA^{3}, Z=4$, $D_{x}=8.44 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71073 \AA, \quad \mu=$ $50 \cdot 1 \mathrm{~mm}^{-1}, F(000)=1648$, room temperature, final $R=0.064$ for $1473\left[\left|F_{o}\right|>3 \sigma\left(F_{o}\right)\right]$ unique reflections. The crystal is isomorphous with $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1.1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ and is composed of a one-dimensional structure of Cu, O and Pt ions running parallel to the b axis.

Introduction. Recently, during the synthesis of single crystals of $\mathrm{ErBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ which shows high- T_{c} superconductivity, a new compound $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1 \cdot 1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ which incorporates the element Pt from a Pt crucible, was obtained (Shishido, Fukuda, Toyota, Ukei \& Sasaki, 1987) and its structural studies were reported
(Ukei, Shishido \& Fukuda, 1988). The same type of compound with Y as the rare-earth element has been studied (Swinnea \& Steinfink, 1987; Laligant, Ferey, Hervieu \& Raveau, 1987).

As an extension of the investigations of this series of $R_{2} \mathrm{Ba}_{2}(\mathrm{Cu}, \mathrm{Pt})_{2} \mathrm{O}_{8}(R=\mathrm{a}$ rare-earth element) compounds, the Ho compound has been prepared to determine the crystal structure.

Experimental. The crystal was prepared with reference to the preparation of $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1.1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ as described elsewhere (Shishido et al., 1987). Crystal size $0.63 \times 0.1 \times 0.1 \mathrm{~mm}$; Rigaku AFC-6A fourcircle diffractometer, graphite-monchromated Mo $K \alpha$ radiation; lattice parameters from 16 reflections ($60<2 \theta<63^{\circ}$); $\omega-2 \theta$ scan mode, scan speed 4°
© 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52642 (24 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1990 International Union of Crystallography

